The RSA306B offers full-featured spectrum analysis and deep signal analysis at a price unmatched by any previous offering. Using the latest in commercial interfaces and available computing power, the RSA306B separates signal acquisition from measurement, dramatically lowering the cost of instrument hardware. Data analysis, storage and replay are performed on your personal computer, tablet or laptop. Managing the PC separately from the acquisition hardware makes computer upgrades easy, and minimizes IT management issues.
The RSA306B operates with SignalVu-PC, a powerful program that is the basis of Tektronix performance signal analyzers. SignalVu-PC offers a deep analysis capability previously unavailable in value-priced solutions. Real-time processing of the DPX spectrum/spectrogram is enabled in your PC, further reducing the cost of hardware. Customers who need programmatic access to the instrument can choose either the SignalVu-PC programmatic interface or use the included application programming interface (API) that provides a rich set of commands and measurements. A MATLAB driver for the API is available, enabling operation with MATLAB and the Instrument Control Toolbox.
See what you've never seen before: The 40 MHz real time bandwidth of the RSA306B combined with the processing power of SignalVu-PC shows you every signal, even down to 100 μs in duration. The following image shows a WLAN transmission (green and orange), and the narrow signals that repeat across the screen are a Bluetooth access probe. The spectrogram (upper part of the screen) clearly separates these signals in time to show any signal collisions.
Monitoring has never been easier. Spectrum mask testing captures detail of transients found in the frequency domain, such as intermittent interference. Mask testing can be set to stop acquisition, save acquisition, save a picture, and send an audible alert. The following image shows a spectrum mask (in orange on the spectrum display) created to monitor a band of frequencies for violations. A single transient of 125 μs duration has occurred that violated the mask, with the violation shown in red. The transient is clearly seen on the spectrogram above the red violation area (circled).